

Our country, our future

525/1

S6 CHEMISTRY

Exam 10

PAPER 1

DURATION: 2 HOUR 45 MINUTES

For Marking guide contact and consultations: Dr. Bbosa Science 0776 802709,

Instructions

- This paper consists of two sections A and B
- Section A is compulsory
- Attempt only six questions in section B
- Answers must be written in the spaces provided only.

For E	Examine	er's Us	e Only													
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

More exams? browse: digitaltears.co.ug For consultations call: +256 776 802709

SECTION A

Answer all questions from this section

	1.	Oxygen diffused through a porous partition in 1.87 minutes. Under similar cond volume of an alkene T diffused in 2.15 minutes	nilar conditions the same		
		(a) Determine the formula of T	(2 ½ marks)		
•••••					
•••••					
•••••	•••••				
		(b) Write equation and outline the mechanism for the reaction between T and	benzene.		
		Indicate the condition (s) for the reaction	(3marks)		
:	2.	(a) define the term heat of reaction (1mark	()		

More exams? browse: digitaltears.co.ug For consultations call: +256 776 802709

	(c)	Calcula	ite the standard entl	halpy of	hydrogenation of ethan	e from the data
	, ,	(i)	$C_2H_6(g) + 3 \frac{1}{2} O_2(g)$			ΔH= -1550kJmol ⁻¹
		(ii)	$C_2H_4(g) + 3 O_2(g)$	\longrightarrow	$2CO_2(g) + 2H_2O(I)$	ΔH= -1390kJmol ⁻¹
		(iii)	$H_2(g) + \frac{1}{2} O_2(g)$	\longrightarrow	H ₂ O(I)	ΔH= -285.8kJmol ⁻¹ (4marks)
3.	(a)	Alumini	um and phosphorus	both for	rm compounds in which	the oxidation state of the
	ele	ment is	+3			
	(a)	Briefly	explain in terms of ϵ	electron	structure why aluminiur	n conducts electricity but the
		commo	on allotropes of pho	sphorus	do not.	
•••••	••••••					
•••••	••••••					
	••••••					

(b) Write equation for the reaction of each of these elements with sodium hydroxide

(3mark)

••••••		•••••
••••••		
4.	Name one reagent that can be used to distinguish between each of the following	g pairs of
	compounds and state what would be observed in each case if the reagent is rea	cted with the
	compounds;	
	(a) CH ₃ CH ₂ NH ² and (CH ₃ CH ₂) ₂ NH	(3marks)
Reagen	ıt	
Observ	ation:	
••••••		
(b)	COCH ₂ CH ₃ CH ₂ COCH ₃	
	and	
_		
Reagen	ıt .	

Observation:	•••
5. (a) Explain the order of increasing basicity for the following compounds. (2marks) $C_6H_5NH_2~ \Big<~NH_3~ \Big< CH_3NH_2$	•••
	•••
	•••
(b) When one mole of methylamine is dissolved in water, the hydrogen ion concentration is	
found to be 2.5 x 10 ⁻¹⁰ moldm ⁻³ .	
(i) Write an equation for the reaction between water and methylamine (1 mark)	
(ii) Calculate the base dissociation constant, Kb, for methylamine. (2 ½ marks)	

•••••				
	6.	The co	nvention of a cell is given below.	
		Pt/Fe ²⁺	(aq),Fe ³⁺ (aq) //MnO ₄ ⁻ (aq),Mn ²⁺ (aq),H ⁺ (aq)/Pt	
	(a)	Write 6	equation for the half-cell reaction at:-	
		(i)	Anode	(1mark)
•••••	•••••	••••••		
•••••	•••••	••••••		
		(ii)	Cathode	(1mark)
	(b)	Write t	he overall equation for the cell reaction.	(1 ½ marks)
	(c)	The ele	ectrode potentials for the system Fe ²⁺ (aq)/Fe ³⁺ (aq) and Mn ²⁺ (aq)/	MnO ₄ (aq) are +0.76V
		and -1.	51V respectively. Deduce whether the reaction in (b) is feasible of	or not and give a reason
		for you	r answer.	(2marks)

7.	(a)Define the term boiling point elevation constant of a substance. (1mark
	(b) The boiling point of benzene under certain pressure condition is 80.0°C. Calculate the boiling
	point elevation constant of benzene, if a solution containing 5g of 2,4,6-trinitrophenol,
	$(HOC_6H_2(NO_2)_3 \text{ in } 100g \text{ of benzene, boils at } 80.568^{\circ}C.$ (4marks)
•••••	
•••••	
8.	2.00g of phosphorus pentachloride allowed to reach equilibrium at 200°C in a vessel of 1dm³
	capacity. If the equilibrium constant of the reaction PCl_5 (g) $\begin{tabular}{l} \end{tabular}$ $PCl_3(g)+Cl_2(g)$ is
	0.008moldm ⁻³ at this temperature and in the conditions stated; calculate the percentage
	dissociation of phosphorus pentachloride at equilibrium. (4marks)

	The first ionization energies of of their chlorides are given belo		metals of the peri	odic table and th	e melting points
		Mg	Са	Sr	Ва
First	ionization energy /kJmol ⁻¹	738	590	549	505
Melt	ing point of chlorides (°C)	708	772	873	967
(i)	Explain (i) Why ionization decreases with increase in atomic number.				
(ii)	Why the melting points of number of the metal.	the chlorides c	of these metals inc	rease with increa	ase in atomic (2marks)

SECTION B (54 MARKS)

(Attempt any six questions from this section)

		(i) Define the term "molar conduct	civity at infinite dilution, Λ_0 . (2)	1mark)		
••••						
••••	(iii)		molar conductivity of sodium chloride			
			easeu. Give a reason foi your answer			
	(c)	The values of Λ_0 at 25°C for some	electrolytes are as follows			
		Electrolyte	Λ_0/Sm^2mol^{-1}			
		HCOONa	104.7			
		NaCl	126.5			
		HCl	426.2			
	(i)	Calculate Λ_0 at 25°C for metha	anoic acid, HCOOH.	(2marks)		
••••	•••••					
	(ii)	If the value of molar conducti	vity, Λ , for 0.01M methanoic acid is ${}^{!}$	50.5Sm²mol ⁻¹ at 25°C.		
		Calculate the acid dissociation	n constant, Ka, for methanoic acid.	(4marks)		
••••						

	•••••			
11.	(a)	(i) Expla	in the term solubility product.	(1mark)
	(ii)		ite an expression for the solubility product of silver chloride in water	
	(b)	10 ⁻² Sm	conductivity of silver ions and chloride ions at infinite dilution are $6.2 ext{ x}$ 10^{-2} mol ⁻¹ respectively at 298K. The electrolytic conductivity of silver chlorometers 10^{-2} Sm ² mol ⁻¹ .	
		(i)	Calculate the solubility in moldm-3 of silver chloride at 298K	(3 ½ marks)
	•••••			
	•••••			
		(ii)	Calculate the solubility product, Ksp, of silver chloride at 298K	(1 ½ marks)

answers.	ie. Explain your
(i) Addition of aqueous ammonia	(1mark)
(ii) Addition of potassium chromate (VI) solution.	(1mark)
12. Write equations to show how the following compounds can be synthesized. (a) $\frac{\text{COCH}_3}{\text{from}}$	(3½ marks)
(b) (CH₃)₃COH from (CH₃)₂CHOH	(2½ marks)
(c) CH₃CH₂CH=CH₂ from ethyne (3n	narks)

13		plain each of the following observations:	
	(i)	Chromium (III) sulphate dissolves in water to form a solution whose p	H is less than
		seven.	(2 ½ marks)
••••••	••••••		
••••••	••••••		
••••••	••••••		
	(ii)	Lead does not form lead (IV) bromide.	(2marks)
	(b) To	a dilute solution of chromium (III) sulphate was added dilute sodium hy	droxide drop wise
		til in excess followed by 3 drops of hydrogen peroxide and mixture war	
		ate what was observed and use equations to explain the observations.	
	310	ate what was observed and use equations to explain the observations.	(4 /2 IIIai K3)
14	. Compl	ete the following equations and in each case write a mechanism for the	reaction.
	(a)	O H $^{+}$	(3marks)
		+ NH ₂ OH →	

/b)		NaOH		(2marks)
(0)	(CH ₃) ₃ CBr	NaOH C ₂ H ₅ OH, Heat		(3marks)
(c)	СН ₃ СН ==	=CH ₂ +CocH ₂ SO ₄	H ₂ O warm	(3marks)
15. Ve _{	getable oils have gr	eat economic and socia	ıl importance	
(a)	(i) Explain what is n	neant by the term <u>vege</u> t	table oils	(1mark)

	(ii)	Name two main sources of vegetable oils.	(1mark)
	(iii)	Describe briefly how vegetable oil can be obtained on a large scale from sources you have named in (a)(i) above. (technical details are not requir	ed) (2marks)
•••••			
	••••••		
			••••••
	(b) (i) S	State the name given to the reaction leading to the formation of soap fro	m oil. (1mark)
	(ii)	Write a general equation for the formation of soap from oil.	(1mark)
			••••••
	(iii)	Outline how soap is manufactured, (technical details not required).	(3marks)
	.		

- 16. State what would be observed and write the equation for the reaction that would take place when:
- (a) Hydrogen sulphide gas is passed through an acidified solution of potassium dichromate (VI).

For consultations call: +256 776 802709

Observation	(2 ½ mark)
Equation:	
(b) 2,3 drops of ammoniacal copper (I) chloride is added to phenyleth	yne. (2marks)
Equation:	
(c) Neutral iron (III) chloride solution is added to 1 cm ³ of propanoic at Observation	acid (2marks)
Equation:	

d) A spa mark	itula end ful of sodium hydrogen carbonate is added to iron (III) chloride s	olution (2 ½
	rvation	
Obse	Ivation	
Equa	tion:	
show	luorine is the first member of the halogen group of elements in the period is anomalous behavior among the halogens.	
(i)	State three major differences between fluorine and other halogens.	(2½ marks
(ii)	Give three causes for the anomalous behaviour of fluorine.	(3mmarks

given in the table below:

Hydride	HF	HCI	HBr	HI
Ka (moldm ⁻³)	5.6 x 10 ⁻¹¹	1 x 10 ⁻⁹	1 x 10 ⁻⁷	1 x 10 ⁻⁴

State and explain the trend in variation of acid strength of the hydrides	(4marks)
	•••••

1	2											3	4	5	6	7	8
1.0																1.0	4.0
н																Н	Не
1													1	2			
6.9	9.0											10.8	12.0	14.0	16.0	19.0	20.2
Li	Ве											В	С	N	О	F	Ne
3	4											5	6	7	8	9	10
23.0	24.3											27.0	28.1	31.0	32.1	35.4	40.0
Na	Mg											Al	Si	Р	S	Cl	Ar
11	12											13	14	15	16	17	18
39.1	40.1	45.0	47.9	50.9	52.0	54.9	55.8	58.9	58.7	63.5	65.7	69.7	72.6	74.9	79.0	79.9	83.8
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
85.5	87.6	88.9	91.2	92.9	95.9	98.9	101	103	106	108	112	115	119	122	128	127	131
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
133	137	139	178	181	184	186	190	192	195	197	201	207	207	209	209	210	222
Cs	Ва	La	Hf	Та	w	Re	Os	lr	Pt	Au	Hg	Ti	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
223	226	227															
Fr	Ra	Ac															
87	88	89															
	00	00	139	140	141	144	147	150	152	157	159	162	165	167	169	173	175
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
			227	232	231	238	237	244	243	247	247	251	254	257	256	254	260
			AC	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lw
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103